Bayes Factors for Smoothing Spline ANOVA

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Backfitting in Smoothing Spline Anova

A computational scheme for fitting smoothing spline ANOVA models to large data sets with a (near) tensor product design is proposed. Such data sets are common in spatial-temporal analyses. The proposed scheme uses the backfitting algorithm to take advantage of the tensor product design to save both computational memory and time. Several ways to further speed up the backfitting algorithm, such a...

متن کامل

Model diagnostics for smoothing spline ANOVA models

The author proposes some simple diagnostics for the assessment of the necessity of selected model terms in smoothing spline ANOVA models; the elimination of practically insignificant terms generally enhances the interpretability of the estimates, and sometimes may also have inferential implications. The diagnostics are derived from Kullback-Leibler geometry, and are illustrated in the settings ...

متن کامل

Smoothing Spline ANOVA for Variable Screening

Smoothing Spline ANOVA is a statistical modeling algorithm based on a function decomposition similar to the classical analysis of variance (ANOVA) decomposition and the associated notions of main effect and interaction. It represents a suitable screening technique for detecting important variables (Variable Screening) in a given dataset. We present the mathematical background together with poss...

متن کامل

Smoothing spline ANOVA frailty model for recurrent event data.

Gap time hazard estimation is of particular interest in recurrent event data. This article proposes a fully nonparametric approach for estimating the gap time hazard. Smoothing spline analysis of variance (ANOVA) decompositions are used to model the log gap time hazard as a joint function of gap time and covariates, and general frailty is introduced to account for between-subject heterogeneity ...

متن کامل

Variable Selection for Support Vector Machines via Smoothing Spline Anova

It is well-known that the support vector machine paradigm is equivalent to solving a regularization problem in a reproducing kernel Hilbert space. The squared norm penalty in the standard support vector machine controls the smoothness of the classification function. We propose, under the framework of smoothing spline ANOVA models, a new type of regularization to conduct simultaneous classificat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bayesian Analysis

سال: 2016

ISSN: 1936-0975

DOI: 10.1214/15-ba974